Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Determination of free copper concentrations in natural waters by using supported liquid membrane extraction under equilibrium conditions

Författare

Summary, in English

A method is described for measurement of freely dissolved copper concentrations in natural water samples using supported liquid membrane (SLM) extraction under equilibrium conditions, a technique denoted "equilibrium sampling through membranes" (ESTM). For this purpose, 1,10-dibenzyl-1,10-diaza-18-crown-6 as neutral carrier and oleic acid were used in the membrane phase. The main variables optimised were the carrier used to form the metal complexes, the organic solvent used in the membrane, the countercation, pH, the ligand used in the acceptor phase, the extraction time, and the flow rate of the donor phase. After the optimisation process an enrichment factor of 18.5 was obtained. Equilibrium conditions were reached after extraction for 60 min if a flow rate of 1.0 mL min(-1) or greater was used. When different ligands such as humic acids, phthalic acid, and EDTA were added to the sample solution, and sample pH ranged from 6 to 8, the results obtained for freely dissolved copper concentrations were in a good agreement with results from speciation calculations performed with Visual Minteq V 2.30, Cheaqs V L20.1, and WinHumic V. The developed technique was applied to analysis of stream and leachate water.

Publiceringsår

2005

Språk

Engelska

Sidor

1452-1459

Publikation/Tidskrift/Serie

Analytical and Bioanalytical Chemistry

Volym

381

Issue

7

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Analytical Chemistry

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1618-2642