Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Protein phosphatase 2A regulates apoptosis in neutrophils by dephosphorylating both p38 MAPK and its substrate caspase 3.

Författare

Summary, in English

The induction of apoptosis in neutrophils is an essential event in the resolution of an inflammatory process. We found recently that the reduction of the activity of the neutrophil survival factor p38 MAPK and dephosphorylation and thus activation of caspases must occur to initiate such cell death in these leukocytes. Here, we report a previously undetected early and transient activation of protein phosphatase 2A WPM in neutrophils undergoing apoptosis. The pharmacological inhibition of this phosphatase during Fas-induced apoptosis augmented the levels of phosphorylation of both p38 MAPK and caspase 3, resulting in a decreased activity of caspase 3 and an increased neutrophil survival. The complementary finding of a time-dependent association among PP2A, p38 MAPK, and caspase 3 in intact neutrophils indicated that there is a direct regulatory link among these signaling enzymes during Fas-provoked apoptosis. Moreover, immunoprecipitated active p38 MAPK and recombinant phosphorylated caspase 3 were dephosphorylated by exposure to purified PP2A in vitro. Consequently, the early and temporary activation of PP2A in neutrophils impaired not only the p38 MAPK-mediated inhibition of caspase 3 but also restored the activity to caspase 3 that had already been phosphorylated and thereby inactivated. These findings indicate that PP2A plays a pivotal dual role in the induction of neutrophil apoptosis and therefore also in the resolution of inflammation.

Publiceringsår

2005

Språk

Engelska

Sidor

6238-6244

Publikation/Tidskrift/Serie

Journal of Biological Chemistry

Volym

280

Issue

7

Dokumenttyp

Artikel i tidskrift

Förlag

American Society for Biochemistry and Molecular Biology

Ämne

  • Cancer and Oncology

Status

Published

Forskningsgrupp

  • Molecular Pathology, Malmö
  • Experimental Pathology, Malmö

ISBN/ISSN/Övrigt

  • ISSN: 1083-351X