Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Boreal forest surface parameterization in the ECMWF model - 1D test with NOPEX long-term data

Författare

Summary, in English

The objective of the present study was to assess the performance and recent improvements of the land surface scheme used operationally in the European Centre for Medium-Range Weather Forecasts (ECMWF) in a Scandinavian boreal forest climate/ecosystem. The previous (the 1999 scheme of P. Viterbo and A. K. Betts) and the new (Tiled ECMWF Surface Scheme for Exchange Processes over Land, TESSEL) surface schemes were validated by single-column runs against data from NOPEX (Northern Hemisphere Climate-Processes Land-Surface Experiment). Driving and validation datasets were prepared for a 3-yr period (1994-96). The new surface scheme, with separate surface energy balances for subgrid fractions (tiling), improved predictions of seasonal as well as diurnal variation in surface energy fluxes in comparison with the old scheme. Simulated wintertime evaporation improved significantly as a consequence of the introduced additional aerodynamic resistance for evaporation from snow lying under high vegetation. Simulated springtime evaporation also improved because the limitation of transpiration in frozen soils was now accounted for. However, downward sensible heat flux was still underestimated during winter, especially at nighttime, whereas soil temperatures were underestimated in winter and overestimated in summer. The new scheme also underestimated evaporation during dry periods in summer, whereas soil moisture was overestimated. Sensitivity tests showed that further improvements of simulated surface heat fluxes and soil temperatures could be obtained by calibration of parameters governing the coupling between the surface and the atmosphere and the ground heat flux, and parameters governing the water uptake by the vegetation. Model performance also improved when the seasonal variation in vegetation properties was included.

Publiceringsår

2003

Språk

Engelska

Sidor

95-112

Publikation/Tidskrift/Serie

Journal of Applied Meteorology

Volym

42

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

American Meteorological Society

Ämne

  • Physical Geography

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0894-8763