Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Equation of state and electronic properties of EuVO4: A high-pressure experimental and computational study

Författare

  • Wojciech Paszkowicz
  • Javier Lopez-Solano
  • Pawel Piszora
  • Bohdan Bojanowski
  • Andres Mujica
  • Alfonso Munoz
  • Yngve Cerenius
  • Stefan Carlson
  • Hanna Dabkowska

Summary, in English

Structural, elastic and electronic properties of zircon-type and scheelite-type EuVO4 are investigated experimentally, by in-situ X-ray diffraction using synchrotron radiation, and theoretically within the framework of the density functional theory (DFT) and using the PBE prescription of the exchange-correlation energy. This study was motivated by the fact that the previous knowledge of the equation of state (EOS) was inconclusive due to a large scatter of the experimental and theoretical data, and by the lack of information on the dependence of the electronic structure with pressure. Under the applied experimental conditions, the zircon-type structure transforms to a scheelite-type one at 7.4(2) GPa, whereas the calculations yield a lower zircon-scheelite-coexistence pressure of 4.8 GPa. The experimental part of the study shows that the bulk modulus of the zircon-type phase is 119(3) GPa, perfectly supported by the DFT-calculated value, 119.1 GPa. The bulk modulus for the scheelite-type polymorph is higher, with an experimental value of 135(7) GPa and a theoretical one of 137.4 GPa. Compared to those reported in previous experimental and DFT or semiempirical works, the present values for the zircon-type phase are comparable or slightly lower, whereas those for the scheelite-type phase are markedly lower. Discrepancies between the present results and earlier reported ones are attributed to differences in details of the experimental method such as the pressure transmitting medium and the pressure calibration method. The calculated band structure confirms that zircon-type EuVO4 is a direct-gap semiconductor, with a bandgap energy at zero pressure of 2.88 eV. Under compression, the bandgap of the zircon phase increases with a coefficient of 10.3 meV/GPa up to the transition pressure, at which point the present calculations show a small drop of the bandgap energy. Above the transition pressure, the bandgap energy of the scheelite phase becomes almost constant, with a small pressure coefficient of just 1.5 meV/GPa. (C) 2015 Elsevier B.V. All rights reserved.

Publiceringsår

2015

Språk

Engelska

Sidor

1005-1016

Publikation/Tidskrift/Serie

Journal of Alloys and Compounds

Volym

648

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Condensed Matter Physics

Nyckelord

  • Rare earth alloys and compounds
  • Elasticity
  • Electronic band structure
  • High pressure
  • X-ray diffraction

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0925-8388