Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Added value in regional climate modeling

Författare

Summary, in English

Regional climate modeling is a dynamical downscaling technique applied to the results of global climate models (GCMs) in order to acquire more information on climate simulations and climate change projections. GCMs and regional climate models (RCMs) have undergone considerable development over the past few decades, and both have increased in resolution. The higher-resolution edge of RCMs compared to GCMs still remains, however. This has been demonstrated in a number of specific studies. As GCMs operate on relatively coarse resolutions, they do not resolve more variable land forms and similar features that shape regional-scale climates. RCMs operate on higher resolutions than GCMs, by a factor of 2-10. Some RCMs now explore resolutions down to 1-5 km. This adds value in regions with variable orography, land-sea and other contrasts, as well as in capturing sharp, short-duration and extreme events. In contrast, large-scale and time-averaged fields, not least over smooth terrain and on scales that have been already skillfully resolved in GCMs, are not much affected. RCMs also generate additional detail compared to GCMs when in climate projection mode. Compared to the present-day climate for which observations exist, here the added value aspect is more complex to evaluate. Nevertheless, added value is meaningfully underlined when there is a clear physical context for it to appear in. In addition to climate modeling and model evaluation-related added value considerations, a significant relevant aspect of added value is the provision of regional scale information, including climate change projections, for climate impact, adaptation, and vulnerability research. (C) 2015 Wiley Periodicals, Inc.

Publiceringsår

2016

Språk

Engelska

Sidor

145-159

Publikation/Tidskrift/Serie

Wiley Interdisciplinary Reviews: Climate Change

Volym

7

Issue

1

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Climate Research

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1757-7799