Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Increased body temperature accelerates aggregation of the (Leu-68–>Gln) mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy

Författare

Summary, in English

Hereditary cystatin C amyloid angiopathy is a dominantly inherited disorder, characterized by dementia, paralysis, and death from cerebral hemorrhage in early adult life. A variant of the cysteine proteinase inhibitor, cystatin C, is deposited as amyloid in the tissues of the patients and their spinal-fluid level of cystatin C is abnormally low. The disease-associated Leu-68-->Gln mutant (L68Q) cystatin C has been produced in an Escherichia coli expression system and isolated by use of denaturing buffers, immunosorption, and gel filtration. Parallel physicochemical and functional investigations of L68Q-cystatin C and wild-type cystatin C revealed that both proteins effectively inhibit the cysteine proteinase cathepsin B (equilibrium constants for dissociation, 0.4 and 0.5 nM, respectively) but differ considerably in their tendency to dimerize and form aggregates. While wild-type cystatin C is monomeric and functionally active even after prolonged storage at elevated temperatures, L68Q-cystatin C starts to dimerize and lose biological activity immediately after it is transferred to a nondenaturing buffer. The dimerization of L68Q-cystatin C is highly temperature-dependent, with a rise in incubation temperature from 37 to 40 degrees C resulting in a 150% increase in dimerization rate. The aggregation at physiological concentrations is likewise increased at 40 compared to 37 degrees C, by approximately 60%. These properties of L68Q-cystatin C have bearing upon our understanding of the pathophysiological process of hereditary cystatin C amyloid angiopathy. They might also be of clinical relevance, since medical intervention to abort febrile periods of carriers of the disease trait may reduce the in vivo formation of L68Q-cystatin C aggregates.

Publiceringsår

1994

Språk

Engelska

Sidor

1416-1420

Publikation/Tidskrift/Serie

Proceedings of the National Academy of Sciences

Volym

91

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

National Academy of Sciences

Ämne

  • Pharmacology and Toxicology
  • Medicinal Chemistry

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1091-6490