Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Modeling development on the meso-scale reacting transport phenomena in proton exchange membrane fuel cells

Författare

  • Jinliang Yuan
  • Yu Xiao

Summary, in English

The catalyst layer (CL) of proton exchange membrane fuel cell (PEMFC) involves various particles and pores in meso-scale, which has an important effect on the mass, charge (proton and electron) and heat transport coupled with the electrochemical reactions. The coarse-grained molecular dynamics (CG-MD) method is employed as a mesoscale structure reconstruction technique to mimic the self-organization phenomena in the fabrication steps of a CL. The meso-scale structure obtained at the equilibrium state is further analyzed by molecular dynamic (MD) software to provide the necessary microscopic parameters for understanding of multi-scale and -physics processes in CLs. The primary pore size distribution (PSD) and active platinum (Pt) surface areas are also calculated and then compared with the experiments. In addition, we also highlight the implementation method to combine microscopic elementary kinetic reaction schemes with the CG-MD approaches to provide insight into the reactions in CLs. The concepts from CG modeling with particle hydrodynamics (SPH) and the problems on coupling of SPH with finite element modeling (FEM) methods are further outlined and discussed to understand the effects of the meso-scale transport phenomena in fuel cells.

Avdelning/ar

Publiceringsår

2013

Språk

Engelska

Sidor

370-378

Publikation/Tidskrift/Serie

Acta Mechanica Sinica

Volym

29

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Energy Engineering

Nyckelord

  • CG-MD
  • Meso-scale
  • Reaction
  • Catalyst layer
  • Fuel cell

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1614-3116