Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Leukocyte contribution to parenchymal cell death in an experimental model of inflammation

Författare

Summary, in English

The relationship between leukocyte migration and parenchymal cell death in vivo remains poorly documented. Accordingly, cell killing in the rat mesentery, as recorded by propidium iodide staining, was investigated with an intravital approach. Superfusion of platelet-activating factor (PAF, 10(-8) M) or N-formyl-methionyl-leucyl-phenylalanine (fMLP, 10(-8) M) led to extensive leukocyte extravasation but no significant cell death. In contrast, pretreatment with 10(-8) M PAF or fMLP for 1 h, followed by superfusion of PAF in combination with fMLP (both at 10(-8) M) led to an increase in cell death. Mesenteric parenchymal cells but no endothelial cells were killed. Some of the dead cells were identified as granulocytes/monocytes that were already in the tissue at the start of the experiment. The incidence of cell death was lower but not eliminated when leukocyte migration was blocked with a monoclonal antibody against CD18. A xanthine oxidase inhibitor, BOF-4272, failed to diminish cell death, whereas a hydroxyl radical scavenger, dimethylthiourea, attenuated cell killing without an effect on the number of adhering and migrating leukocytes. These observations demonstrate that leukocytes serve as a factor in the killing of extravascular cells only after the development of a level of stimulation that differs from that required to induce a migratory stimulus into the extravascular space.

Publiceringsår

1997

Språk

Engelska

Sidor

163-175

Publikation/Tidskrift/Serie

Journal of Leukocyte Biology

Volym

62

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

John Wiley & Sons Inc.

Ämne

  • Cell and Molecular Biology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1938-3673