Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Effects of support material on the pattern of volatile fatty acid accumulation at overload in anaerobic digestion of semi-solid waste

Författare

Summary, in English

Anaerobic degradation of a semi-solid waste with a total solids content of 4% particulate matter, much of it insoluble, was investigated in four laboratory-scale reactors. Two of the reactors were equipped with different textile materials for immobilisation of microorganisms, while the other two were used as continuously-stirred-tank reactor references, A constant organic loading rate and hydraulic retention time were used in the start-up period; the hydraulic retention time was then decreased and the effects of this change were monitored. Volatile fatty acid (VFA) concentration and pH were chosen as indicators of the microbial status in the reactors. The reactors with support material showed a greater resistance to overload than did the continuously-stirred-tank reactors. This is in agreement with many studies undertaken on the anaerobic treatment of wastewater. However, no problems with clogging occurred, showing that a support material is also applicable in systems treating waste containing large amounts of insoluble, particulate matter. The pH was comparable to VFA for indicating an approaching process failure. However, the pattern of VFA accumulation was qualitatively different between the reactors with and without support material, Obviously the metabolic pattern of mixed cultures changes when the microorganisms are immobilised.

Publiceringsår

1997

Språk

Engelska

Sidor

640-644

Publikation/Tidskrift/Serie

Applied Microbiology and Biotechnology

Volym

47

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1432-0614