Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Analytical model of beach erosion and overwash during storms

Författare

Summary, in English

During severe storms high waves and water levels may greatly impact the sub-aerial portion of the beach inducing significant morphological change at elevations that the waves can not reach under normal conditions. Morphological formations such as dunes and barrier islands may suffer from direct wave impact and erode. Overwash occurs if the wave run-up and/or the mean water level are sufficiently high allowing for water and sediment to pass over the beach crest, which in turn causes flooding and deposition of sediment shoreward of the crest. An analytical model of sub-aerial beach response to storms was developed based on impact theory, including overwash, and the evolution of schematised dunes was investigated. Furthermore, the analytical model was applied to the case of schematised barrier islands exposed to extensive overwash. After validation using field data, the analytical model was employed at two coastal sites, namely Ocean City on the United States east coast and the Ebro Delta on the Spanish Mediterranean coast, in order to calculate quantities for assessing the storm impact on beaches, such as eroded volume, overwash volume, beach crest reduction, and contour-line retreat. These quantities were subsequently analysed to derive empirical probability distribution functions to be utilised in different types of risk assessment concerning flooding and erosion in coastal areas.

Publiceringsår

2009

Språk

Engelska

Sidor

115-125

Publikation/Tidskrift/Serie

Proceedings of the Institution of Civil Engineers. Maritime Engineering

Volym

162

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

ICE UK

Ämne

  • Water Engineering

Nyckelord

  • coastal engineering
  • hydraulics
  • hydrodynamics/mathematical modelling

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1741-7597