Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

The growth of external AM fungal mycelium in sand dunes and in experimental systems

Författare

Summary, in English

We estimated the biomass and growth of arbuscular mycorrhizal (AM) mycelium in sand dunes using signature fatty acids. Mesh bags and tubes, containing initially mycelium-free sand, were buried in the field near the roots of the dune grass Ammophila arenaria L. AM fungal mycelia were detected at a distance of about 8.5 cm from the roots after 68 days of growth by use of neutral lipid fatty acid (NLFA) 16:15. The average rate of mycelium extension during September and October was estimated as 1.2 mm day–1. The lipid and fatty acid compositions of AM fungal mycelia of isolates and from sand dunes were analysed and showed all to be of a similar composition. Phospholipid fatty acids (PLFAs) can be used as indicators of microbial biomass. The mycelium of G. intraradices growing in glass beads contained 8.3 nmol PLFAs per mg dry biomass, and about 15% of the PLFAs in G. intraradices, G. claroideum and AM fungal mycelium extracted from sand dunes, consisted of the signature PLFA 16:15. We thus suggest a conversion factor of 1.2 nmol PLFA 16:15 per mg dry biomass. Calculations using this conversion factor indicated up to 34 g dry AM fungal biomass per g sand in the sand dunes, which was less than one tenth of that found in an experimental system with Glomus spp. growing with cucumber as plant associate in agricultural soil. The PLFA results from different systems indicated that the biomass of the AM fungi constitutes a considerable part of the total soil microbial biomass. Calculations based on ATP of AM fungi in an experimental growth system indicated that the biomass of the AM fungi constituted approximately 30% of the total microbial biomass.

Publiceringsår

2000

Språk

Engelska

Sidor

161-169

Publikation/Tidskrift/Serie

Plant and Soil

Volym

226

Issue

2

Dokumenttyp

Artikel i tidskrift

Förlag

Springer

Ämne

  • Ecology

Status

Published

Forskningsgrupp

  • Microbial Ecology
  • Plant Biology

ISBN/ISSN/Övrigt

  • ISSN: 0032-079X