SZEGŐ-WIDOM ASYMPTOTICS OF CHEBYSHEV POLYNOMIALS
ON CIRCULAR ARCS

BENJAMIN EICHINGER

Abstract

We review the main results of the seminal paper of Widom [2] on asymptotics of orthogonal and Chebyshev polynomials associated with a set E (i.e., the monic polynomials of degree at most n that minimize the sup-norm $\|T_n\|_E$), where E is a system of Jordan regions and arcs. Thiran and Detaille [1], considered the Chebyshev polynomials T_n on a circular arc A_α and managed to find an explicit formula for the asymptotics of the extremal value $\|T_n\|_{A_\alpha}$, disproving a conjecture of Widom stated in the aforementioned paper. We give the Szegő-Widom asymptotics of the domain $\mathbb{C} \setminus A_\alpha$ explicitly, i.e., the limit of the properly normalized extremal functions T_n. Moreover, we solve a similar problem with respect to the upper envelope of a family of polynomials uniformly bounded on A_α. Our computations show that in the proper normalization the limit of the upper envelope is the diagonal of a reproducing kernel of a certain Hilbert space of analytic functions.

References

Benjamin Eichinger,
Johannes Kepler University, Linz,
A-4040 Linz, Austria.
benjamin.eichinger@jku.at