Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Periodic motion planning for virtually constrained Euler-Lagrange systems

Publiceringsår: 2006
Språk: Engelska
Sidor: 900-907
Publikation/Tidskrift/Serie: Systems & Control Letters
Volym: 55
Nummer: 11
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier


The paper suggests an explicit form of a general integral of motion for some classes of dynamical systems including n-degrees of freedom Euler-Lagrange systems subject to (n - 1) virtual holonomic constraints. The knowledge of this integral allows to extend the classical results due to Lyapunov for detecting a presence of periodic solutions for a family of second order systems, and allows to solve the periodic motion planning task for underactuated Euler-Lagrange systems, when there is only one not directly actuated generalized coordinate. As an illustrative example, we have shown how to create a periodic oscillation of the pendulum for a cart-pendulum system and how then to make them orbitally exponentially stable following the machinery developed in [A. Shiriaev, J. Perram, C. Canudas-de-Wit, Constructive tool for an orbital stabilization of underactuated nonlinear systems: virtual constraint approach, IEEE Trans. Automat. Control 50 (8) (2005) 1164-1176]. The extension here also considers time-varying virtual constraints. (C) 2006 Elsevier B.V. All rights reserved.


  • Control Engineering
  • holonomic constraints
  • motion planning under-actuated Euler-Lagrange systems
  • virtual
  • Lyapunov lemma
  • periodic solutions


  • ISSN: 0167-6911

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen