Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Constructing a neural system for surface inspection

  • Carl-Henrik Grunditz
  • Martin Walder
  • Lambert Spaanenburg
  • Jacek Malec
Publiceringsår: 2004
Språk: Engelska
Sidor: 68-73
Publikation/Tidskrift/Serie: SAIS Workshop
Dokumenttyp: Konferensbidrag
Förlag: SAIS


Visual quality assurance techniques focus on the detection and qualification of abnormal structures in the image of an object. The features of abnormality are extracted through image mining, whereupon classification is performed on characteristic combinations. Many techniques for feature extraction have been proposed, but the feed-forward neural network is seldom utilized despite its popularity in other application areas. Based on this wide experience base, this paper shows how a multi-tier feed-forward network can be constructed to model detectable peaks using only the physical properties of the image domain. This generic architecture can easily be adapted for different applications, as in metal plate inspection and protein detection, with mean error rate below 5%.


  • Electrical Engineering, Electronic Engineering, Information Engineering


Joint SAIS/SSLS Workshop, 2004
  • DISKA/DO:PING-lup-obsolete

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen