Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

The influence of the local structure of Fe(III) on the photocatalytic activity of doped TiO2 photocatalysts-An EXAFS, XPS and Mossbauer spectroscopic study

  • Eva G. Bajnoczi
  • Nandor Balazs
  • Karoly Mogyorosi
  • David F. Sranko
  • Zsolt Pap
  • Zoltan Ambrus
  • Sophie Canton
  • Katarina Norén
  • Erno Kuzmann
  • Attila Vertes
  • Zoltan Homonnay
  • Albert Oszko
  • Istvan Palinko
  • Pal Sipos
Publiceringsår: 2011
Språk: Engelska
Sidor: 232-239
Publikation/Tidskrift/Serie: Applied Catalysis B: Environmental
Volym: 103
Nummer: 1-2
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier


Fe(III)-doped TiO2 based heterogeneous photocatalysts were prepared by the sol-gel technique (S samples) or flame hydrolysis (F samples). In photocatalytic phenol decomposition, the undoped F-sample performed much better, than the undoped S one. However, for the S samples, photocatalytic activity first increased with the increasing Fe(III) concentration, and then passed through a maximum, while Fe(III)-doping in F samples significantly decreased it, even at the smallest dopant level. Since the same dopant caused opposite photocatalytic effects in the two series, their structure was systematically compared to identify the underlying chemical and/or physical reasons. The photocatalysts were first characterized by AAS, DRS, XRD and TEM methods and it has been shown that the differences in the photocatalytic activity cannot be explained by the minor variations in the bulk structural properties of TiO2. Mossbauer and XP spectroscopic measurements performed on representative samples qualitatively proved that the local structure of Fe(III) is different in the two series. To quantify these effects, Fe-K edge X-ray absorption measurements were performed. From the pre-edge and XANES region it was learnt that Fe(III) was present in a distorted octahedral environment in both series, however, the extent of distortion is much more significant within the S than within the F one. Information obtained from the EXAFS region indicated that the structure of Fe2O3 was much more ordered in the F-series then in the S one and vacancies were more abundant in the S than in the F series. Moreover, the geometry around Fe(III) systematically varied within the S-series, which could explain, why photocatalytic activity passed through a maximum with the increasing Fe(III) concentration in these samples. (C) 2011 Elsevier B.V. All rights reserved.


  • Atom and Molecular Physics and Optics
  • TiO2
  • Fe(III) doping
  • XPS
  • Mossbauer
  • Local structure
  • Photocatalysis


  • ISSN: 0926-3373

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen