Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Minimax Adaptive Control and Estimation

Minimax adaptiv reglering och estimering

Författare

Summary, in English

This thesis presents five papers on minimax adaptive control and estimation. Minimax adaptive estimation is a framework for output prediction and state estimation that provides a priori computable performance bounds for esti- mators. Minimax adaptive controllers ensure that the closed loop has finite gain, maintaining stability and performance under model class uncertainty.
The contributions of these papers are as follows: Paper I: Presents a min- imax optimal output prediction algorithm for linear systems with parameter uncertainty. Paper II: Proposes an algorithm to compute performance bounds for minimax adaptive estimators. Paper III: Develops a minimax suboptimal adaptive controller for scalar linear systems with noisy measurements. Paper IV: Introduces a class of nonlinear systems for which minimax dual control admits a finite-dimensional sufficient statistic, builds dynamic programming theory around this class, and designs an adaptive controller for stabilizing an integrator from absolute-value measurements. Paper V: Provides a unified framework for state-feedback and output-feedback minimax adaptive control and methods for synthesizing suboptimal controllers. Complementing these theoretical contributions are two software artifacts: one for adaptive control and the other for adaptive estimation.
The contributions apply to simple systems that represent components of larger systems, marking a step towards automating controller synthesis and maintenance for critical infrastructures.

Publiceringsår

2024

Språk

Engelska

Dokumenttyp

Doktorsavhandling

Förlag

Department of Automatic Control, Lund University

Ämne

  • Control Engineering

Aktiv

Published

Projekt

  • Scalable Control using Learning and Adaptation
  • Scalable Control of Interconnected Systems

ISBN/ISSN/Övrigt

  • ISBN: 978-91-8104-167-5
  • ISBN: 978-91-8104-168-2

Försvarsdatum

11 oktober 2024

Försvarstid

09:15

Försvarsplats

Lecture hall A, building M, Ole Römers väg 1

Opponent

  • Jack Umenberger (Senior Research Fellow, Dr)