Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Homogenization of the Maxwell Equations at Fixed Frequency

Publiceringsår: 2003
Språk: Engelska
Sidor: 170-195
Publikation/Tidskrift/Serie: SIAM Journal on Applied Mathematics
Volym: 64
Nummer: 1
Dokumenttyp: Artikel i tidskrift
Förlag: SIAM Publications


The homogenization of the Maxwell equations at fixed frequency is addressed in this paper. The bulk (homogenized) electric and magnetic properties of a material with a periodic microstructure are found from the solution of a local problem on the unit cell by suitable averages. The material can be anisotropic and satisfies a coercivity condition. The exciting field is generated by an incident field from sources outside the material under investigation. A suitable sesquilinear form is defined for the interior problem, and the exterior Calderón operator is used to solve the exterior radiating fields. The concept of two-scale convergence is employed to solve the homogenization problem. A new a priori estimate is proved as well as a new result on the correctors.


  • Other Electrical Engineering, Electronic Engineering, Information Engineering
  • Electrical Engineering, Electronic Engineering, Information Engineering


  • Electromagnetic theory-lup-obsolete
  • ISSN: 0036-1399

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen