Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Transient waves in nonstationary media

Publiceringsår: 1996
Språk: Engelska
Sidor: 2229-2252
Publikation/Tidskrift/Serie: Journal of Mathematical Physics
Volym: 37
Nummer: 5
Dokumenttyp: Artikel i tidskrift
Förlag: American Institute of Physics


This paper treats propagation of transient waves in nonstationary media, which has many applications in, for example, electromagnetics and acoustics. The underlying hyperbolic equation is a general, homogeneous, linear, first-order 2×2 system of equations. The coefficients in this system depend on one spatial coordinate and time. Furthermore, memory effects are modeled by integral kernels, which, in addition to the spatial dependence, are functions of two different time coordinates. These integrals generalize the convolution integrals, frequently used as a model for memory effects in the medium. Specifically, the scattering problem for this system of equations is addressed. This problem is solved by a generalization of the wave splitting concept, originally developed for wave propagation in media which are invariant under time translations, and by an imbedding or a Green's functions technique. More explicitly, the imbedding equation for the reflection kernel and the Green's functions (propagator kernels) equations are derived. Special attention is paid to the problem of nonstationary characteristics. A few numerical examples illustrate this problem.


  • Other Electrical Engineering, Electronic Engineering, Information Engineering
  • Electrical Engineering, Electronic Engineering, Information Engineering


  • Electromagnetic theory-lup-obsolete
  • ISSN: 0022-2488

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen