Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents

Författare

  • Roberto G. Lucchini
  • Silvia Zoni
  • Stefano Guazzetti
  • Elza Bontempi
  • Serena Micheletti
  • Karin Broberg Palmgren
  • Giovanni Parrinello
  • Donald R. Smith

Summary, in English

Background: Pediatric lead (Pb) exposure impacts cognitive function and behavior and co-exposure to manganese (Mn) may enhance neurotoxicity. Objectives: To assess cognitive and behavioral function in adolescents with environmental exposure to Pb and Mn. Methods: In this cross sectional study, cognitive function and behavior were examined in healthy adolescents with environmental exposure to metals. The Wechsler Intelligence Scale for Children (WISC) and the Conners-Wells' Adolescent Self-Report Scale Long Form (CASS:L) were used to assess cognitive and behavioral function, respectively. ALAD polymorphisms rs1800435 and rs1139488 were measured as potential modifiers. Results: We examined 299 adolescents (49.2% females) aged 11-14 years. Blood lead (BPb) averaged 1.71 mu g/dL (median 1.5, range 0.44-10.2), mean Blood Manganese (BMn) was 11.1 mu g/dL (median 10.9, range 4.00-24.1). Average total IQ was 106.3 (verbal IQ= 102, performance IQ= 109.3). According to a multiple regression model considering the effect of other covariates, a reduction of about 2.4 IQ points resulted from a two-fold increase of BPb. The Benchmark Level of BPb associated with a loss of 1 IQ-point (BML01) was 0.19 mu g/dL, with a lower 95% confidence limit (BMLL01) of 0.11 mu g/dL. A very weak correlation resulted between BPb and the ADHD-like behavior (Kendall's tau rank correlation=0.074, p=0.07). No influence of ALAD genotype was observed on any outcome. Manganese was not associated with cognitive and behavioral outcomes, nor was there any interaction with lead. Conclusions: These findings demonstrate that very low level of lead exposure has a significant negative impact on cognitive function in adolescent children. Being an essential micro-nutrient, manganese may not cause cognitive effects at these low exposure levels. (c) 2012 Elsevier Inc. All rights reserved.

Publiceringsår

2012

Språk

Engelska

Sidor

65-71

Publikation/Tidskrift/Serie

Environmental Research

Volym

118

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Environmental Health and Occupational Health

Nyckelord

  • Cognitive functions
  • Lead
  • Manganese
  • Children

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1096-0953