Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Oceanic long-distance navigation: Do experienced migrants use the Earth's magnetic field?

Författare

Summary, in English

Albatrosses and sea turtles are known to perform extremely long-distance journeys between disparate feeding areas and breeding sites located on small, isolated, oceanic islands or at specific coastal sites. These oceanic journeys, performed mainly over or through apparently featureless mediums, indicate impressive navigational abilities, and the sensory mechanisms used are still largely unknown. This research used three different approaches to investigate whether bi-coordinate navigation based on magnetic field gradients is likely to explain the navigational performance of wandering albatrosses in the South Atlantic and Indian Oceans and of green turtles breeding on Ascension Island in the South Atlantic Ocean. The possibility that magnetic field parameters can potentially be used in a bi-coordinate magnetic map by wandering albatrosses in their foraging area was investigated by analysing satellite telemetry data published in the literature. The possibilities for using bi-coordinate magnetic navigation varied widely between different areas of the Southern Oceans, indicating that a common mechanism, based on a bi-coordinate geomagnetic map alone, was unlikely for navigation in these areas. In the second approach, satellite telemetry was used to investigate whether Ascension Island green turtles use magnetic information for navigation during migration from their breeding island to foraging areas in Brazilian coastal waters. Disturbing magnets were applied to the heads and carapaces of the turtles, but these appeared to have little effect on their ability to navigate. The only possible effect observed was that some of the turtles with magnets attached were heading for foraging areas slightly south of the control turtles along the Brazilian coast. In the third approach, breeding female green turtles were deliberately displaced in the waters around Ascension Island to investigate which cues these turtles might use to locate and return to the island; the results suggested that cues transported by wind might be involved in the final stages of navigation.

Publiceringsår

2001

Språk

Engelska

Sidor

419-427

Publikation/Tidskrift/Serie

Journal of Navigation

Volym

54

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Cambridge University Press

Ämne

  • Biological Sciences

Status

Published

Forskningsgrupp

  • Animal Navigation Lab

ISBN/ISSN/Övrigt

  • ISSN: 0373-4633