Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Performance of handheld MIMO terminals in noise- and interference-limited urban macrocellular scenarios

Publiceringsår: 2012
Språk: Engelska
Sidor: 3901-3912
Publikation/Tidskrift/Serie: IEEE Transactions on Antennas and Propagation1963-01-01+01:00
Volym: 60
Nummer: 8
Dokumenttyp: Artikel i tidskrift
Förlag: IEEE--Institute of Electrical and Electronics Engineers Inc.


Abstract in Undetermined

Multiple-antenna handheld terminals are an integral part of the latest mobile communication systems, due to the adoption of multiple-input multiple-output (MIMO) technology. In this contribution, MIMO performances of three multiple-antenna configurations for smart phones are investigated in an urban macrocellular environment, based on an extensive MIMO measurement campaign at 2.65 GHz. The smart phones were held in a two-hand user grip position and both downlink noise- and interference-limited scenarios were evaluated. Our results show that, overall along the test route, the capacity performances are dictated by the power of the communication links. Nevertheless, locally, the multipath richness of the communication channel can have a significant impact on the capacity performances. In addition to the terminal antenna configurations, spatial and cross polarization references were also utilized to further illustrate the importance of multipath richness in both the desired and the interference channels. Moreover, the differences in the local capacity performances along the route for the three antenna configurations give a first indication of the potential benefit in implementing reconfigurable multiple antennas. If switching for maximum capacity is applied between the terminal antenna configurations in the two-hand grip position, average capacity improvements of up to 17% and 30% for local 20 m route sections are observed in the noise- and the interference-limited scenarios, respectively.


  • Electrical Engineering, Electronic Engineering, Information Engineering
  • MIMO
  • channel capacity
  • interference channels
  • antennas


  • EIT_ANTCHN Antenna-Channel Harmonization for Throughput Enhancement in Advanced Mobile Terminals
  • Radio Systems-lup-obsolete
  • Electromagnetic theory-lup-obsolete
  • ISSN: 0018-926X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen