Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Fungal and bacterial recolonisation of acid and alkaline forest soils following artificial heat treatments

Författare

Summary, in English

The direct response and the short-term recolonisation of soil by fungi and bacteria were studied after heat treatments of a humus soil with high carbon content and low pH. and a calcareous soil with lower carbon content and high pH. Heating was administered using a muffle furnace or an autoclave, with different temperatures and times of heat exposure, after which fresh soil (1%) was added as inoculum. Autoclaved soil showed more marked increases in bacterial growth during the recovery phase than oven-heated soil, and the bacterial growth response was more rapid in calcareous than in humus soil. Fungal growth recovered more rapid and reached values higher than the control in humus soil, while it remained low until the end of the study in calcareous soil. Respiration rate showed similar patterns in both soils. Fungal biomass (ergosterol and PLFA 18:2w6.9) indicated that fungi benefited by autoclaving in humus soil, while they were disfavoured by this treatment in calcareous soil. The sum of bacterial PLFAs did not change due to heating, but some bacterial PLFAs (e.g. cy17:0) increased in both soils. We propose that the community assembly of the microbial communities after heating were mainly driven by pH, in that the high pH soil selected primarily for bacteria and the low pH soil for fungi. (C) 2011 Elsevier Ltd. All rights reserved.

Publiceringsår

2011

Språk

Engelska

Sidor

1023-1033

Publikation/Tidskrift/Serie

Soil Biology & Biochemistry

Volym

43

Issue

5

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Biological Sciences

Nyckelord

  • Forest fire
  • Soil
  • Fungal growth
  • Bacterial growth
  • Respiration
  • pH

Status

Published

Projekt

  • Interaction between fungi and bacteria in soil
  • Carbon drivers and microbial agents of soil respiration
  • Effect of environmental factors on fungal and bacterial growth in soil
  • Microbial carbon-use efficiency

Forskningsgrupp

  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 0038-0717