Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ultra low energy vs throughput design exploration of 65 nm sub-VT CMOS digital filters

Författare

Summary, in English

This paper presents an analysis on energy dissipation of a digital half band filters operated in the the sub-threshold (sub-VT ) region with throughput constraints. The degradation of speed in the sub-VT domain is counteracted by unfolding the architectures. A filter is implemented in a basic 12-bit and its various unfolded structures. The designs are synthesized in a 65 nm low-leakage high-threshold CMOS technology. A sub-

VT energy model is applied to characterize the designs in the sub-VT domain. The results from application of an energy model shows that the unfolded by 2 architecture is most energy efficient, dissipating 22% less energy compared to it the original filter implementation at energy minimum voltage. Unfolded by 4 architecture, however, is the best for throughput requirements of 100Ksamples/sec to 1Msamples/s, as it dissipates less energy

than any other implementation in this speed range.

Publiceringsår

2010

Språk

Engelska

Publikation/Tidskrift/Serie

[Host publication title missing]

Dokumenttyp

Konferensbidrag

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Nyckelord

  • High Threshold standard cells
  • Digital Filters
  • CMOS
  • Sub-Threshold
  • 65 nm
  • Design Exploration
  • Ultra Low Energy
  • Throughput

Conference name

NORCHIP Conference, 2010

Conference date

2010-11-15 - 2010-11-16

Conference place

Tampere, Finland

Status

Published

Forskningsgrupp

  • Digital ASIC
  • Analog RF
  • Elektronikkonstruktion

ISBN/ISSN/Övrigt

  • ISBN: 978-1-4244-8972-5