Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

A Second Pathway to Degrade Pyrimidine Nucleic Acid Precursors in Eukaryotes.

Författare

  • Gorm Andersen
  • Olof Björnberg
  • Silvia Poláková
  • Yuriy Pynyaha
  • Anna Rasmussen
  • Kasper Møller
  • Anders Hofer
  • Thomas Moritz
  • Michael Sandrini
  • Anna-Maria Merico
  • Concetta Compagno
  • Hans-Erik Åkerlund
  • Zoran Gojković
  • Jure Piskur

Summary, in English

Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.

Publiceringsår

2008

Språk

Engelska

Sidor

656-666

Publikation/Tidskrift/Serie

Journal of Molecular Biology

Volym

380

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Biological Sciences

Nyckelord

  • urea
  • uracil degradation
  • nucleic acid precursors
  • metabolic pathways
  • 3-hydroxypropionic acid

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1089-8638