Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

QRS slopes for early ischemia detection and characterization

Författare

Summary, in English

In this study, the upward (IUS) and downward (IDS) slopes of the QRS complex are proposed as indices for quantifying ischemia-induced electrocardiogram (ECG) changes. Using ECG recordings acquired before and during percutaneous transluminal coronary angioplasty (PTCA), it is found that the QRS slopes are considerably less steep during artery occlusion, in particular for IDS. With respect to ischemia detection, the slope indices outperform the often used high-frequency index (defined as the root mean square (rms) of the bandpass-filtered QRS signal for the frequency band 150-250 Hz) as the mean relative factors of change are much larger for IUS and IDS than for the high-frequency index (6.9 and 7.3 versus 3.7). The superior performance of the slope indices is equally valid when other frequency bands of the high-frequency index are investigated (the optimum one is found to be 125-175 Hz). Employing a simulation model in which the slopes of a template QRS are altered by different techniques, it is found that the slope changes observed during PTCA are mostly due to a widening of the QRS complex or a decrease of its amplitudes, but not a reduction of its high-frequency content or a combination of this and the previous effects. It is concluded that QRS slope information can be used as an adjunct to the conventional ST segment analysis in the monitoring of myocardial ischemia.

Publiceringsår

2008

Språk

Engelska

Sidor

468-477

Publikation/Tidskrift/Serie

IEEE Transactions on Biomedical Engineering

Volym

55

Issue

2, part 1

Dokumenttyp

Artikel i tidskrift

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Medical Engineering

Status

Published

Forskningsgrupp

  • Signal Processing Group
  • Signal Processing

ISBN/ISSN/Övrigt

  • ISSN: 1558-2531