Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Optimal Bayesian foraging policies and prey population dynamics - Some comments on Rodriguez-Girones and Vasquez

Publiceringsår: 2000
Språk: Engelska
Sidor: 369-375
Publikation/Tidskrift/Serie: Theoretical Population Biology
Volym: 57
Nummer: 4
Dokumenttyp: Artikel i tidskrift
Förlag: Academic Press


In this paper we show the density-dependent harvest rates of optimal Bayesian foragers exploiting prey occurring with clumped spatial distribution. Rodriguez-Girones and Vasquez (1997) recently treated the issue, but they used a patch-leaving rule (current value assessment rule) that is not optimal for the case described here. An optimal Bayesian forager exploiting prey whose distribution follows the negative binomial distribution should leave a patch when the potential land not instantaneous) gain rate in that patch equals the best long-term gain rate in the environment (potential value assessment rule). It follows that the instantaneous gain rate at which the patches are abandoned is an increasing function of the time spent searching in the patch. It also follows that the proportion of prey harvested in a patch is an increasing sigmoidal function of the number of prey initially present. In this paper we vary several parameters of the model to evaluate the effects on the forager's intake rate, the proportion of prey harvested per patch, and the prey's average mortality rate in the environment. In each case, we study an intake rate maximizing forager's optimal response to the parameter changes. For the potential value assessment rule we find that at a higher average prey density in the environment, a lower proportion of the prey is taken in a patch with a given initial prey density. The proportion of prey taken in a patch of a given prey density also decreases when the variance of the prey density distribution is increased and if the travel time between patches is reduced. We also evaluate the effect of using predation minimization, rather than rate maximization, as the currency. Then a higher proportion of the prey is taken for each given initial prey density. This is related to the assumption that traveling between patches is the most risky activity. Compared to the optimal potential value assessment rule, the current value assessment rule performs worse, in terms of long-term intake rate achieved. The difference in performance is amplified when prey density is high or highly aggregated. These results pertain to the foraging patch spatial scale and may have consequences for the spatial distribution of prey in the environment, (C) 2000 Academic Press.


  • Ecology


  • ISSN: 1096-0325

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen