Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Monitoring spatiotemporal variation in abundance and dispersal by a pheromone-kairomone system in the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus

Publiceringsår: 2011
Språk: Engelska
Sidor: 891-902
Publikation/Tidskrift/Serie: Journal of Insect Conservation
Volym: 15
Nummer: Published online 31 March
Dokumenttyp: Artikel i tidskrift
Förlag: Springer


Pheromone monitoring could provide unique spatial and temporal information about rare and threatened insect species for conservation purposes. Pheromone traps may be especially valuable in detecting fluctuations and declines in vulnerable species, if trap catch can be related to population density. We exploited the pheromone-kairomone system of the hermit beetle Osmoderma eremita and its predator, the red click beetle Elater ferrugineus, to monitor variation in their flight activity during 7 years (2001–2002, 2005–2009). Spatial and temporal flight activity of O. eremita and E. ferrugineus were highly correlated over individual trap replicates and trap days. Yearly flight activities of both species were correlated within two core sites included during all years of the study, and positively affected by temperature both within and between years. Flight activity could not be directly translated to variation in abundance in either species, however. Dispersal rate was likely the main factor explaining flight activity in O. eremita. Normalizing the flight activity of E. ferrugineus against that of O. eremita did not eliminate most of the variability, however, suggesting that flight activity of E. ferrugineus was governed both by dispersal rate and by population density. Higher fluctuations in population density of E. ferrugineus likely render it more vulnerable to local extinction, which may explain the greater rarity of this species. We suggest that preserving large assemblies of suitable hollow trees would be absolutely essential for buffering against stochastic population fluctuations and securing the long-term persistence of E. ferrugineus.


  • Biological Sciences
  • Zoology
  • Coleoptera
  • Conservation
  • Population
  • Sex pheromone
  • Time series
  • Variability


  • The PheroBio project (Pheromone monitoring of Biodiversity)
  • Pheromone Group
  • ISSN: 1366-638X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen