Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Studies of Ferric Heme Proteins with Highly Anisotropic/Highly Axial Low Spin (S=1/2) Electron Paramagnetic Resonance Signals with bis-Histidine and Histidine-Methionine Axial Iron Coordination

  • Giorgio Zoppellaro
  • Kara L. Bren
  • Amy A. Ensign
  • Espen Harbitz
  • Ravinder Kaur
  • Hans-Petter Hersleth
  • Ulf Ryde
  • Lars Hederstedt
  • K. Kristoffer Andersson
Publiceringsår: 2009
Språk: Engelska
Sidor: 1064-1082
Publikation/Tidskrift/Serie: Biopolymers
Volym: 91
Nummer: 12
Dokumenttyp: Artikel i tidskrift
Förlag: John Wiley & Sons


Six-coordinated heme groups are involved in a large variety of electron transfer reactions because of their ability to exist in both the ferrous (Fe2+) andferric (Fe3+) state without any large differences in structure. Our studies on hemes coordinated by two histidines (bis-His) and hemes coordinated by histidine and methionine (His-Met) will be reviewed. In both of these coordination environments, the heme core can exhibit ferric low spin (electron paramagnetic resonance EPR) signals with large g(max) values (also called Type I, highly anisotropic low spin, or highly axial low spin, HALS species) as Well as rhombic EPR (Type II) signals. In bis-His coordinated hemes rhombic and HALS envelopes are related to the orientation of the His groups with respect to each other such that (i) parallel His planes results in a rhombic signal and (ii) perpendicular His planes results in a HALS signal. Correlation between the structure of the heme and its ligands for heme with His-Met axial ligation and ligand-field parameters, as derived from a large series of cytochrome c variants, show, however, that for such a combination of axial ligands there is no clear-cut difference between the large g(max) and the "small ganisotropy" cases as a result of the relative Met-His arrangements. Nonetheless, a new linear correlation links the average shift of the heme methyl groups with the g(max) values. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 1064-1082, 2009.


  • Biological Sciences
  • Theoretical Chemistry
  • H-1 NMR
  • EPR
  • cytochrome
  • DFT calculation
  • ligand-field anisotropy


  • ISSN: 0006-3525

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen