Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity

  • B Lohkamp
  • Birgit Andersen
  • Jure Piskur
  • D Dobritzsch
Publiceringsår: 2006
Språk: Engelska
Sidor: 13762-13776
Publikation/Tidskrift/Serie: Journal of Biological Chemistry
Volym: 281
Nummer: 19
Dokumenttyp: Artikel i tidskrift
Förlag: ASBMB


In eukaryotes, dihydropyrimidinase catalyzes the second step of the reductive pyrimidine degradation, the reversible hydrolytic ring opening of dihydropyrimidines. Here we describe the three- dimensional structures of dihydropyrimidinase from two eukaryotes, the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum, determined and refined to 2.4 and 2.05 angstrom, respectively. Both enzymes have a ( beta/ alpha)(8)- barrel structural core embedding the catalytic di- zinc center, which is accompanied by a smaller beta- sandwich domain. Despite loop- forming insertions in the sequence of the yeast enzyme, the overall structures and architectures of the active sites of the dihydropyrimidinases are strikingly similar to each other, as well as to those of hydantoinases, dihydroorotases, and other members of the amidohydrolase superfamily of enzymes. However, formation of the physiologically relevant tetramer shows subtle but nonetheless significant differences. The extension of one of the sheets of the beta- sandwich domain across a subunit- subunit interface in yeast dihydropyrimidinase underlines its closer evolutionary relationship to hydantoinases, whereas the slime mold enzyme shows higher similarity to the noncatalytic collapsin- response mediator proteins involved in neuron development. Catalysis is expected to follow a dihydroorotase- like mechanism but in the opposite direction and with a different substrate. Complexes with dihydrouracil and N- carbamyl- beta- alanine obtained for the yeast dihydropyrimidinase reveal the mode of substrate and product binding and allow conclusions about what determines substrate specificity, stereoselectivity, and the reaction direction among cyclic amidohydrolases.


  • Biological Sciences


  • ISSN: 1083-351X

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen