Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Parameter uncertainties in the modelling of vegetation dynamics — effects on tree community structure and ecosystem functioning in European forest biomes

Publiceringsår: 2008
Språk: Engelska
Sidor: 277-290
Publikation/Tidskrift/Serie: Ecological Modelling
Volym: 216
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier


Dynamic vegetation models are useful tools for analysing terrestrial ecosystem processes and their interactions with climate through variations in carbon and water exchange. Long-term changes in structure and composition (vegetation dynamics) caused by altered competitive strength between plant functional types (PFTs) are attracting increasing attention as controls on ecosystem functioning and potential feedbacks to climate. Imperfect process knowledge and limited observational data restrict the possibility to parameterise these processes adequately and potentially contribute to uncertainty in model results. This study addresses uncertainty among parameters scaling vegetation dynamic processes in a process-based ecosystem model, LPJ-GUESS, designed for regional-scale studies, with the objective to assess the extent to which this uncertainty propagates to additional uncertainty in the tree community structure (in terms of the tree functional types present and their relative abundance) and thus to ecosystem functioning (carbon storage and fluxes). The results clearly indicate that the uncertainties in parameterisation can lead to a shift in competitive balance, most strikingly among deciduous tree PFTs, with dominance of either shade-tolerant or shade-intolerant PFTs being possible, depending on the choice of plausible parameter values. Despite this uncertainty, our results indicate that the resulting effect on ecosystem functioning is low. Since the vegetation dynamics in LPJ-GUESS are representative for the more complex Earth system models now being applied within ecosystem and climate research, we assume that our findings will be of general relevance. We suggest that, in terms of carbon storage and fluxes, the heavier parameterisation requirement of the processes involved does not widen the overall uncertainty in model predictions. (C) 2008 Elsevier B.V. All rights reserved.


  • Physical Geography
  • ecosystem models Latin hypercube sampling LPJ-GUESS
  • establishment
  • mortality
  • carbon fluxes


  • ISSN: 0304-3800

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen