Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Long flights do not influence immune responses of a long-distance migrant bird: a wind-tunnel experiment

Publiceringsår: 2007
Språk: Engelska
Sidor: 1123-1131
Publikation/Tidskrift/Serie: Journal of Experimental Biology
Volym: 210
Nummer: 7
Dokumenttyp: Artikel i tidskrift
Förlag: The Company of Biologists Ltd


Heavy physical work can result in physiological stress and suppressed immune function. Accordingly, long-distance migrant birds that fly for thousands of km within days can be expected to show immunosuppression, and hence be more vulnerable to infections en route. The red knot Calidris canutus Linnaeus is a long-distance migrant shorebird. We flew red knots the equivalent of 1500 km over 6 days in a wind tunnel. The humoral and cell-mediated immune responses of the flyers were compared to those of non-flying controls. Humoral immunity was measured as antibody production against injected diphtheria and tetanus antigens, and cell-mediated response as phytohemagglutinin-induced wing-web swelling. Blood corticosterone levels, which may modulate immune function, were measured in parallel. The long flights had no detectable effects on humoral or cell-mediated immune responses, or on corticosterone levels. Thus, flight performance per se may not be particularly stressful or immunosuppressive in red knots. Some birds assigned as flyers refused to fly for extended periods. Before flights started, these non-flyers had significantly lower antibody responses against tetanus than the birds that carried out the full flight program. This suggests that only birds in good physical condition may be willing to take on heavy exercise. We conclude that these long-distance migrants appear well adapted to the work load induced by long flights, enabling them to cope with long flight distances without increased stress levels and suppression of immunity. Whether this also applies in the wild, where the migrating birds may face adverse weather and food conditions, remains to be investigated.


  • Biological Sciences
  • Ecology


  • Molecular Ecology and Evolution Lab
  • ISSN: 1477-9145

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen