Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast.

Författare

Summary, in English

Low-glycemic index (GI) foods and foods rich in whole grain are associated with reduced risk of type 2 diabetes and cardiovascular disease. We studied the effect of cereal-based bread evening meals (50 g available starch), varying in GI and content of indigestible carbohydrates, on glucose tolerance and related variables after a subsequent standardized breakfast in healthy subjects (n = 15). At breakfast, blood was sampled for 3 h for analysis of blood glucose, serum insulin, serum FFA, serum triacylglycerides, plasma glucagon, plasma gastric-inhibitory peptide, plasma glucagon-like peptide-1 (GLP-1), serum interleukin (IL)-6, serum IL-8, and plasma adiponectin. Satiety was subjectively rated after breakfast and the gastric emptying rate (GER) was determined using paracetamol as a marker. Breath hydrogen was measured as an indicator of colonic fermentation. Evening meals with barley kernel based bread (ordinary, high-amylose- or beta-glucan-rich genotypes) or an evening meal with white wheat flour bread (WWB) enriched with a mixture of barley fiber and resistant starch improved glucose tolerance at the subsequent breakfast compared with unsupplemented WWB (P < 0.05). At breakfast, the glucose response was inversely correlated with colonic fermentation (r = -0.25; P < 0.05) and GLP-1 (r = -0.26; P < 0.05) and positively correlated with FFA (r = 0.37; P < 0.001). IL-6 was lower (P < 0.01) and adiponectin was higher (P < 0.05) at breakfast following an evening meal with barley-kernel bread compared with WWB. Breath hydrogen correlated positively with satiety (r = 0.27; P < 0.01) and inversely with GER (r = -0.23; P < 0.05). In conclusion, the composition of indigestible carbohydrates of the evening meal may affect glycemic excursions and related metabolic risk variables at breakfast through a mechanism involving colonic fermentation. The results provide evidence for a link between gut microbial metabolism and key factors associated with insulin resistance.

Publiceringsår

2008

Språk

Engelska

Sidor

732-739

Publikation/Tidskrift/Serie

Journal of Nutrition

Volym

138

Issue

4

Dokumenttyp

Artikel i tidskrift

Förlag

Oxford University Press

Ämne

  • Nutrition and Dietetics

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1541-6100