Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Acidification of sandy grasslands - consequences for plant diversity

Författare

Summary, in English

Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N. as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and Favour of target species.

Publiceringsår

2009

Språk

Engelska

Sidor

350-361

Publikation/Tidskrift/Serie

Applied Vegetation Science

Volym

12

Issue

3

Dokumenttyp

Artikel i tidskrift

Förlag

Opulus Press

Ämne

  • Ecology

Nyckelord

  • Sandy grasslands
  • Sand steppe
  • diversity
  • Plant species
  • Nutrient availability
  • Acidification
  • Calcareous soil
  • Threatened plant species

Status

Published

Forskningsgrupp

  • Plant Biology

ISBN/ISSN/Övrigt

  • ISSN: 1402-2001