Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

A comprehensive standardized model for ultrawideband propagation channels

Författare

  • Andreas Molisch
  • Dajana Cassioli
  • Chia-Chin Chong
  • Shahriar Emami
  • Andrew Fort
  • Balakrishnan Kannan
  • Johan Kåredal
  • Juergen Kunisch
  • Hans Gregory Schantz
  • Kazimierz Siwiak
  • Moe Z. Win

Summary, in English

A comprehensive statistical model is described for ultrawideband (UWB) propagation channels that is valid for a frequency range from 3-10 GHz. It is based on measurements and simulations in the following environments: residential indoor, office indoor, builtup outdoor, industrial indoor, farm environments, and body area networks. The model is independent of the used antennas. It includes the frequency dependence of the path gain as well as several generalizations of the Saleh-Valenzuela model, like mixed Poisson times of arrival and delay-dependent cluster decay constants. A separate model is specified for the frequency range below 1 GHz. The model can thus be used for realistic performance assessment of UWB systems. It was accepted by the IEEE 802.15.4a Task Group as standard model for evaluation of UWB system proposals. This paper also presents a critical assessment of the applicability of the model and possible generalizations and improvements.

Publiceringsår

2006

Språk

Engelska

Sidor

3151-3166

Publikation/Tidskrift/Serie

IEEE Transactions on Antennas and Propagation

Volym

54

Issue

11

Dokumenttyp

Artikel i tidskrift

Förlag

IEEE - Institute of Electrical and Electronics Engineers Inc.

Ämne

  • Electrical Engineering, Electronic Engineering, Information Engineering

Nyckelord

  • ultrawideband (UWB)
  • wireless propagation
  • delay dispersion
  • statistical channel model

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0018-926X