Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC

Publiceringsår: 2006
Språk: Engelska
Sidor: 894-908
Publikation/Tidskrift/Serie: Ecosystems
Volym: 9
Nummer: 6
Dokumenttyp: Artikel i tidskrift
Förlag: Springer


Detailed information from the Swedish National Forest Inventory was used to simulate the carbon balance for Sweden by the process-based model Biome-BGC. A few shortcomings of the model were identified and solutions to those are proposed and also used in the simulations. The model was calibrated against CO2 flux data from 3 forests in central Sweden and then applied to the whole country divided into 30 districts and 4 age classes. Gross primary production (GPP) ranged over districts and age classes from 0.20 to 1.71 kg C m(-2) y(-1) and net ecosystem production (NEP) ranged from -0.01 to 0.44. The 10- to 30-year age class was the strongest carbon sink because of its relatively low respiration rates. When the simulation results were scaled up to the whole country, GPP and NEP were 175 and 29 Mton C y(-1), respectively, for the 22.7 Mha of forests in Sweden. A climate change scenario was simulated by assuming a 4 degrees C increase in temperature and a doubling of the CO2 concentration; GPP and NEP then increased to 253 and 48 Mton C y(-1), respectively. A sensitivity analysis showed that at present CO2 concentrations NEP would peak at an increase of 5 degrees C for the mean annual temperature. At higher CO2 levels NEP showed a logarithmic increase.


  • Physical Geography
  • biome-bgc
  • national carbon balance
  • Norway spruce
  • boreal forest
  • scots pine
  • environmental change
  • modelling


  • ISSN: 1432-9840

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen