Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Counting perfect matchings as fast as Ryser

Publiceringsår: 2012
Språk: Engelska
Sidor: 914-921
Publikation/Tidskrift/Serie: [Host publication title missing]
Dokumenttyp: Konferensbidrag
Förlag: SIAM


We show that there is a polynomial space algorithm that counts the number of perfect matchings in an n-vertex graph in O*(2n/2) ⊂ O(1.415n) time. (O*(f(n)) suppresses functions polylogarithmic in f(n)). The previously fastest algorithms for the problem was the exponential space O*(((1 + √5)/2)n) ⊂ O(1.619n) time algorithm by Koivisto, and for polynomial space, the O(1.942n) time algorithm by Nederlof. Our new algorithm's runtime matches up to polynomial factors that of Ryser's 1963 algorithm for bipartite graphs. We present our algorithm in the more general setting of computing the hafnian over an arbitrary ring, analogously to Ryser's algorithm for permanent computation.

We also give a simple argument why the general exact set cover counting problem over a slightly superpolynomial sized family of subsets of an n element ground set cannot be solved in O*(2(1−ε1)n) time for any ε1 > 0 unless there are O*(2(1−ε2)n) time algorithms for computing an n x n 0/1 matrix permanent, for some ε2 > 0 depending only on ε1.


  • Computer Science


ACM-SIAM Symposium on Discrete Algorithms
  • Exact algorithms
  • Algorithms-lup-obsolete

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen