Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Predictive screening for regulators of conserved functional gene modules (gene batteries) in mammals

Författare

  • S. Nelander
  • E. Larsson
  • E. Kristiansson
  • R. Mansson
  • O. Nerman
  • Mikael Sigvardsson
  • P. Mostad
  • P. Lindahl

Summary, in English

Background: The expression of gene batteries, genomic units of functionally linked genes which are activated by similar sets of cis- and trans-acting regulators, has been proposed as a major determinant of cell specialization in metazoans. We developed a predictive procedure to screen the mouse and human genomes and transcriptomes for cases of gene-battery-like regulation. Results: In a screen that covered ∼ 40 per cent of all annotated protein-coding genes, we identified 21 co-expressed gene clusters with statistically supported sharing of cis- regulatory sequence elements. 66 predicted cases of over-represented transcription factor binding motifs were validated against the literature and fell into three categories: (i) previously described cases of gene battery-like regulation, (ii) previously unreported cases of gene battery-like regulation with some support in a limited number of genes, and (iii) predicted cases that currently lack experimental support. The novel predictions include for example Sox 17 and RFX transcription factor binding sites that were detected in ∼ 10% of all testis specific genes, and HNF-1 and 4 binding sites that were detected in ∼ 30% of all kidney specific genes respectively. The results are publicly available at http://www.wlab.gu.se/lindahl/genebatteries. Conclusion: 21 co-expressed gene clusters were enriched for a total of 66 shared cis-regulatory sequence elements. A majority of these predictions represent novel cases of potential co-regulation of functionally coupled proteins. Critical technical parameters were evaluated, and the results and the methods provide a valuable resource for future experimental design.

Publiceringsår

2005

Språk

Engelska

Sidor

21-21

Publikation/Tidskrift/Serie

BMC Genomics

Volym

6

Dokumenttyp

Artikel i tidskrift

Förlag

BioMed Central (BMC)

Ämne

  • Genetics

Nyckelord

  • NETWORK
  • DATABASE
  • MUSCLE-CELL-DIFFERENTIATION
  • TRANSCRIPT PROFILING ANALYSIS
  • SEQUENCES
  • MICROARRAY
  • PROTEIN
  • EXPRESSION
  • KAPPA-B
  • MOLECULAR-CLONING

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1471-2164