Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Text categorization using predicate-argument structures

Publiceringsår: 2009
Språk: Engelska
Sidor: 142-149
Publikation/Tidskrift/Serie: Proceedings of the 17th Nordic Conference on Computational Lin- guistics (NODALIDA 2009) / Nealt Proceedings Series
Volym: 4
Dokumenttyp: Konferensbidrag


Most text categorization methods use the vector space model in combination with a representation of documents based on bags of words. As its name indicates, bags of words ignore possible structures in the text and only take into account isolated, unrelated words. Although this limitation is widely acknowledged, most previous attempts to extend the bag-of-words model with more advanced approaches failed to produce conclusive improvements. We propose a novel method that extends the word-level representation to automatically extracted semantic and syntactic features. We investigated three extensions: word-sense information, subject–verb–object triples, and rolesemantic predicate–argument tuples, all fitting within the vector space model. We computed their contribution to the categorization results on the Reuters corpus of newswires (RCV1). We show that these three extensions, either taken individually or in combination, result in statistically significant improvements of the microaverage F1 over a baseline using bags of words. We found that our best extended model that uses a combination of syntactic and semantic features reduces the error of the word-level baseline by up to 10 percent for the categories having more than 1,000 documents in the training corpus.


  • Computer Science


  • ISSN: 1736-6305

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen