Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Clustering ECG complexes using Hermite functions and self-organizing maps

Publiceringsår: 2000
Språk: Engelska
Sidor: 838-848
Publikation/Tidskrift/Serie: IEEE Transactions on Biomedical Engineering
Volym: 47
Nummer: 7
Dokumenttyp: Artikel i tidskrift
Förlag: IEEE--Institute of Electrical and Electronics Engineers Inc.


An integrated method for clustering of QRS complexes is presented which includes basis function representation and self-organizing neural networks (NN's). Each QRS complex is decomposed into Hermite basis functions and the resulting coefficients and width parameter are used to represent the complex. By means of this representation, unsupervised self-organizing NNs are employed to cluster the data into 25 groups. Using the MIT-BIH arrhythmia database, the resulting clusters are found to exhibit a very low degree of misclassification (1.5%). The integrated method outperforms, on the MIT-BIH database, both a published supervised learning method as well as a conventional template cross-correlation clustering method.


  • Medical Engineering


  • Nuclear medicine, Malmö
  • ISSN: 0018-9294

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen