Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Bacterial pH-optima for growth track soil pH, but are higher than expected at low pH

Författare

Summary, in English

One of the most influential factors determining the growth and composition of soil bacterial communities is pH. However, soil pH is often correlated with many other factors, including nutrient availability and plant community, and causality among factors is not easily determined. If soil pH is directly influencing the bacterial community, this must lead to a bacterial community growth optimised for the in situ pH. Using one set of Iberian soils (46 soils covering pH 4.2-7.3) and one set of UK grassland soils (16 soils covering pH 3.3-7.5) we measured the pH-optima for the growth of bacterial communities. Bacterial growth was estimated by the leucine incorporation method. The pH-optima for bacterial growth were positively correlated with soil pH, demonstrating its direct influence on the soil bacterial community. We found that the pH from a water extraction better matched the bacterial growth optimum compared with salt extractions of soil. Furthermore, we also showed a more subtle pattern between bacterial pH growth optima and soil pH. While closely matched at neutral pHs, pH-optima became higher than the in situ pH in more acid soils, resulting in a difference of about one pH-unit at the low-pH end. We propose that an explanation for the pattern is an interaction between increasing overall bacterial growth with higher pHs and the unimodal pH-response for growth of bacterial communities. (C) 2011 Elsevier Ltd. All rights reserved.

Publiceringsår

2011

Språk

Engelska

Sidor

1569-1575

Publikation/Tidskrift/Serie

Soil Biology & Biochemistry

Volym

43

Issue

7

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Biological Sciences

Nyckelord

  • Soil acidity
  • pH-tolerance
  • Bacterial growth
  • pH-optima
  • Leucine
  • incorporation

Status

Published

Projekt

  • Interaction between fungi and bacteria in soil
  • Effect of environmental factors on fungal and bacterial growth in soil
  • Microbial carbon-use efficiency

Forskningsgrupp

  • Microbial Ecology

ISBN/ISSN/Övrigt

  • ISSN: 0038-0717