Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Comparison of Decision Making Strategies for Self-Optimization in Autonomic Computing Systems

  • Martina Maggio
  • Henry Hoffmann
  • Alessandro Vittorio Papadopoulos
  • Jacopo Panerati
  • Marco Domenico Santambrogio
  • Anant Agarwal
  • Alberto Leva
Publiceringsår: 2012
Språk: Engelska
Publikation/Tidskrift/Serie: ACM Transactions on Autonomous and Adaptive Systems
Volym: 7
Nummer: 4
Dokumenttyp: Artikel i tidskrift
Förlag: Assoc Computing Machinery


Autonomic computing systems are capable of adapting their behavior and resources thousands of times a second to automatically decide the best way to accomplish a given goal despite changing environmental conditions and demands. Different decision mechanisms are considered in the literature, but in the vast majority of the cases a single technique is applied to a given instance of the problem. This paper proposes a comparison of some state of the art approaches for decision making, applied to a self-optimizing autonomic system that allocates resources to a software application. A variety of decision mechanisms, from heuristics to control-theory and machine learning, are investigated. The results obtained with these solutions are compared by means of case studies using standard benchmarks. Our results indicate that the most suitable decision mechanism can vary depending on the specific test case but adaptive and model predictive control systems tend to produce good performance and may work best in a priori unknown situations.


  • Control Engineering
  • Algorithms
  • Design
  • Performance
  • Decision mechanisms
  • comparison
  • design approaches


  • LCCC-lup-obsolete
  • ISSN: 1556-4665

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen