Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

A uniqueness theorem for the Helmholtz' equation: Penetrable media with an infinite interface

Publiceringsår: 1980
Språk: Engelska
Sidor: 1104-1117
Publikation/Tidskrift/Serie: SIAM Journal on Mathematical Analysis
Volym: 11
Nummer: 6
Dokumenttyp: Artikel i tidskrift
Förlag: SIAM


In this paper we will prove the uniqueness of a solution to Helmholtz' equation for two halfspaces of different media in $n$ dimensions. The theorem allows a finite number of bounded inhomogeneities in each half space. The surface separating the half spaces is assumed to be a cone of arbitrary cross section far away from the origin and is furthermore assumed to be smooth. We assume all space to be lossless, and in each halfspace we assume a radiation condition to be fulfilled. The boundary conditions at the interface are a general coupling in the field and its normal derivative with constant coefficients.


  • Electrical Engineering, Electronic Engineering, Information Engineering


  • ISSN: 0036-1410

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen