Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population.

  • Sarah C L Knowles
  • Matthew J Wood
  • Ricardo Alves
  • Teddy A Wilkin
  • Staffan Bensch
  • Ben C Sheldon
Publiceringsår: 2011
Språk: Engelska
Sidor: 1062-1076
Publikation/Tidskrift/Serie: Molecular Ecology
Volym: 20
Dokumenttyp: Artikel i tidskrift
Förlag: Wiley-Blackwell


Avian malaria (Plasmodium spp.) and other blood parasitic infections of birds constitute increasingly popular model systems in ecological and evolutionary host-parasite studies. Field studies of these parasites commonly use two traits in hypothesis testing: infection status (or prevalence at the population level) and parasitaemia, yet the causes of variation in these traits remain poorly understood. Here, we use quantitative PCR to investigate fine-scale environmental and host predictors of malaria infection status and parasitaemia in a large 4-year data set from a well-characterized population of blue tits (Cyanistes caeruleus). We also examine the temporal dynamics of both traits within individuals. Both infection status and parasitaemia showed marked temporal and spatial variation within this population. However, spatiotemporal patterns of prevalence and parasitaemia were non-parallel, suggesting that different biological processes underpin variation in these two traits at this scale. Infection probability and parasitaemia both increased with host age, and parasitaemia was higher in individuals investing more in reproduction (those with larger clutch sizes). Several local environmental characteristics predicted parasitaemia, including food availability, altitude, and distance from the woodland edge. Although infection status and parasitaemia were somewhat repeatable within individuals, infections were clearly dynamic: patent infections frequently disappeared from the bloodstream, with up to 26% being lost between years, and parasitaemia also fluctuated within individuals across years in a pattern that mirrored annual population-level changes. Overall, these findings highlight the ecological complexity of avian malaria infections in natural populations, while providing valuable insight into the fundamental biology of this system that will increase its utility as a model host-parasite system.


  • Biological Sciences


  • BECC
  • Molecular Ecology and Evolution Lab
  • ISSN: 0962-1083

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen