Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

SufA of the opportunistic pathogen Finegoldia magna modulates actions of the antibacterial chemokine MIG/CXCL9, promoting bacterial survival during epithelial inflammation.

Författare

Summary, in English

The anaerobic bacterium Finegoldia magna is part of the human commensal microbiota, but is also an important opportunistic pathogen. This bacterium expresses a subtilisin-like serine-proteinase, SufA, which partially degrade the antibacterial chemokine MIG/CXCL9. Here, we show that MIG/CXCL9 is produced by human keratinocytes in response to inflammatory stimuli. In contrast to the virulent human pathogen Streptococcus pyogenes, presence of F. magna had no enhancing effect on the MIG/CXCL9 expression by keratinocytes, suggesting poor detection of the latter by pathogen-recognition receptors. When MIG/CXCL9 was exposed to SufA-expressing F. magna, the molecule was processed into several smaller fragments. Analysis by mass-spectrometry showed that SufA cleaves MIG/CXCL9 at several sites in the COOH-terminal region of the molecule. At equimolar concentrations, SufA-generated MIG/CXCL9-fragments were not bactericidal against F. magna, but retained their ability to kill S. pyogenes. Moreover, the SufA-generated MIG/CXCL9 fragments were capable of activating the angiostasis-mediating CXCR3 receptor, which is expressed on endothelial cells, in an order of magnitude similar to that of intact MIG/CXCL9. F. magna expresses a surface protein called FAF that is released from the bacterial surface by SufA. Soluble FAF was found to bind and inactivate the antibacterial activity of MIG/CXCL9, thereby further potentially promoting the survival of F. magna. The findings suggest that SufA modulation of the inflammatory response could be a mechanism playing an important role in creating an ecologic niche for F. magna, decreasing antibacterial activity and suppressing angiogenesis, thus providing advantage in survival for this anaerobic opportunist compared with competing pathogens during inflammation.

Publiceringsår

2009

Språk

Engelska

Sidor

29499-29508

Publikation/Tidskrift/Serie

Journal of Biological Chemistry

Volym

284

Dokumenttyp

Artikel i tidskrift

Förlag

American Society for Biochemistry and Molecular Biology

Ämne

  • Infectious Medicine
  • Respiratory Medicine and Allergy

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1083-351X