Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Optimal stochastic discrete time–frequency analysis in the ambiguity and time-lag domain

Publiceringsår: 2010
Språk: Engelska
Sidor: 2203-2211
Publikation/Tidskrift/Serie: Signal Processing
Volym: 90
Nummer: 7
Dokumenttyp: Artikel i tidskrift
Förlag: Elsevier


In stochastic time-frequency analysis, the covariance function is often estimated from only one observed realization with the use of a kernel function. For processes in continuous time, this can equivalently be done in the ambiguity domain, with the advantage that the mean square error optimal ambiguity kernel can be computed. For processes in discrete time, several ambiguity domain definitions have been proposed. It has previously been reported that in the Jeong-Williams ambiguity domain, in contrast to the Nutall and the Claasen-Mecklenbräucker ambiguity domain, any smoothing covariance function estimator can be represented as an ambiguity kernel function. In this paper, we show that the Jeong-Williams ambiguity domain can not be used to compute the mean square error (MSE) optimal covariance function estimate for processes in discrete time. We also prove that the MSE optimal estimator can be computed without the use of the ambiguity domain, as the solution to a system of linear equations. Some properties of the optimal estimator are derived.


  • Probability Theory and Statistics
  • Time-frequency analysis
  • Auto Covariance Sequence (ACVS)
  • Ambiguity domain


  • Statistical Signal Processing Group
  • ISSN: 0165-1684

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen