Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Inductive logic programming algorithm for estimating quality of partial plans

Publiceringsår: 2007
Språk: Engelska
Sidor: 359-369
Publikation/Tidskrift/Serie: MICAI 2007: Advances in Artificial Intelligence / Lecture notes in computer science
Volym: 4827
Dokumenttyp: Konferensbidrag
Förlag: Springer


We study agents situated in partially observable environments, who do not have the resources to create conformant plans. Instead, they create conditional plans which are partial, and learn from experience to choose the best of them for execution. Our agent employs an incomplete symbolic deduction system based on Active Logic and Situation Calculus for reasoning about actions and their consequences. An Inductive Logic Programming algorithm generalises observations and deduced knowledge in order to choose the best plan for execution. We show results of using PROGOL learning algorithm to distinguish "bad" plans, and we present three modifications which make the algorithm fit this class of problems better. Specifically, we limit the search space by fixing semantics of conditional branches within plans, we guide the search by specifying relative relevance of portions of knowledge base, and we integrate learning algorithm into the agent architecture by allowing it to directly access the agent's knowledge encoded in Active Logic. We report on experiments which show that those extensions lead to significantly better learning results.


  • Computer Science


6th Mexican International Conference on Artificial Intelligence (MICAI 2007)
  • ISSN: 0302-9743
  • ISSN: 1611-3349
  • ISBN: 978-3-540-76630-8

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen