Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

A Closed Form Expression for the Exact Bit Error Probability for Viterbi Decoding of Convolutional Codes

Publiceringsår: 2012
Språk: Engelska
Sidor: 4635-4644
Publikation/Tidskrift/Serie: IEEE Transactions on Information Theory
Volym: 58
Nummer: 7
Dokumenttyp: Artikel i tidskrift
Förlag: IEEE--Institute of Electrical and Electronics Engineers Inc.


In 1995, Best et al. published a formula for the exact bit error probability for Viterbi decoding of the rate R=1/2, memory m=1 (2-state) convolutional encoder with generator matrix G(D)=(1 1+D) when used to communicate over the binary symmetric channel. Their formula was later extended to the rate R=1/2, memory m=2 (4-state) convolutional encoder with generator matrix G(D)=(1+D^2 1+D+D^2) by Lentmaier et al.

In this paper, a different approach to derive the exact bit error probability is described. A general recurrent matrix equation, connecting the average information weight at the current and previous states of a trellis section of the Viterbi decoder, is derived and solved. The general solution of this matrix equation yields a closed form expression for the exact bit error probability. As special cases, the expressions obtained by Best et al. for the 2-state encoder and by Lentmaier et al. for a 4-state encoder are obtained. The closed form expression derived in this paper is evaluated for various realizations of encoders, including rate R=1/2 and R=2/3 encoders, of as many as 16 states.

Moreover, it is shown that it is straightforward to extend the approach to communication over the quantized additive white Gaussian noise channel.


  • Electrical Engineering, Electronic Engineering, Information Engineering
  • additive white Gaussian noise channel
  • binary symmetric channel
  • bit error probability
  • convolutional code
  • convolutional encoder
  • exact bit error probability
  • Viterbi decoding


  • Information Theory-lup-obsolete
  • ISSN: 0018-9448

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen