Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Respiratory tract mucins: structure and expression patterns

Publiceringsår: 2002
Språk: Engelska
Sidor: 76-93
Publikation/Tidskrift/Serie: Mucus Hypersecretion in Respiratory Disease (Novartis Foundation Symposia)
Volym: 248
Dokumenttyp: Del av eller Kapitel i bok
Förlag: John Wiley & Sons


Goblet cells produce mainly MUC5AC, but also MUC5B and some MUC2 in apparently 'irritated' airways. MUC513 dominates in the submucosal glands although a little MUC5AC and MUC7 are usually present. MUC4 originates from the ciliated cells. After separation into a gel and a sol phase, lysozyme and lactoferrin are enriched in the salivary gel phase suggesting that mucus may act as a matrix for 'protective' proteins on the mucosal surface. A salivary MUC5B N-terminal fragment consistent with a cleavage event in the D' domain was detected with antibodies against various N-terminal peptide sequences suggesting that assembly of MUC5B occurs through a mechanism similar to that of the von Willebrand factor. Identification of additional cleavage sites C-terminal to the D'domain suggests that most of the N-terminal low-glycosylated part of MUC5B may be removed without affecting the oligomeric nature of the mucin. Possibly, the generation of mucins with different macromolecular properties through proteolytic 'processing' is one way of adapting the mucus polymer matrix to meet local physiological demands. Monomeric mucins that appear to turn over rapidly in the airway epithelium have been identified using radiolabelled mucin precursors. 'Shedding' of such mucins after microbe attachment may prevent colonization of epithelial surfaces.


  • Cell and Molecular Biology


  • ISBN: 9780470844786

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen