Meny

Javascript verkar inte påslaget? - Vissa delar av Lunds universitets webbplats fungerar inte optimalt utan javascript, kontrollera din webbläsares inställningar.
Du är här

Scalable Distributed Kalman Filtering for Mass-Spring Systems

Författare:
Publiceringsår: 2007
Språk: Engelska
Dokumenttyp: Konferensbidrag

Sammanfattning

This paper considers Kalman Filtering for massspring
systems. The aim is a scalable distributed implementation
where nodes communicate in a sparse pattern and the
state estimate for each node is available locally and usable
for control. The focus is on translation invariant systems, to
make use of the powerful results available based on Fourier
Transform methods. In this case it is known that Kalman Filters
will have a coupling that asymptotically falls off exponentially
with distance. Examples are shown where the Kalman Filter
gains can be truncated very narrowly with small performance
loss even though the coupling falls off slowly. A step towards
spatially varying systems is taken in analyzing a system with
periodically placed sensors, and it is shown that the original
design is insensitive to this spatial variation.

Disputation

Nyckelord

  • Technology and Engineering
  • Kalman Filtering
  • distributed estimation
  • flexible structures

Övriga

46th IEEE Conference on Decision and Control
New Orleans, LA
Published
Yes

Box 117, 221 00 LUND
Telefon 046-222 00 00 (växel)
Telefax 046-222 47 20
lu [at] lu [dot] se

Fakturaadress: Box 188, 221 00 LUND
Organisationsnummer: 202100-3211
Om webbplatsen