Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Genetic variation in glutathione-related genes and body burden of methylmercury.

Författare

Summary, in English

BACKGROUND: Exposure to toxic methylmercury (MeHg) through fish consumption is a large problem worldwide, and it has led to governmental recommendations of reduced fish consumption and blacklisting of mercury-contaminated fish. The elimination kinetics of MeHg varies greatly among individuals. Knowledge about the reasons for such variation is of importance for improving the risk assessment for MeHg. One possible explanation is hereditary differences in MeHg metabolism. MeHg is eliminated from the body as a glutathione (GSH) conjugate. OBJECTIVES: We conducted this study to assess the influence of polymorphisms in GSH-synthesizing [glutamyl-cysteine ligase modifier subunit (GCLM-588) and glutamyl-cysteine ligase catalytic subunit (GCLC-129)] or GSH-conjugating [glutathione S-transferase pi 1 (GSTP1-105 and GSTP1-114)] genes on MeHg retention. METHODS: Based on information obtained from questionnaires, 292 subjects from northern Sweden had a high consumption of fish (lean/fat fish two to three times per week or more). We measured total Hg in erythrocytes (Ery-Hg) and long-chain n-3 polyunsaturated fatty acids in plasma (P-PUFA; an exposure marker for fish intake). RESULTS: The GSTP1 genotype modified Ery-Hg; effects were seen for GSTP1-105 and -114 separately, and combining them resulted in stronger effects. We found evidence of effect modification: individuals with zero or one variant allele demonstrated a steeper regression slope for Ery-Hg (p = 0.038) compared with individuals with two or more variant alleles. The GCLM-588 genotype also influenced Ery-Hg (p = 0.035): Individuals with the GCLM-588 TT genotype demonstrated the highest Ery-Hg, but we saw no evidence of effect modification with increasing P-PUFA. CONCLUSIONS: These results suggest a role of GSH-related polymorphisms in MeHg metabolism.

Publiceringsår

2008

Språk

Engelska

Sidor

734-739

Publikation/Tidskrift/Serie

Environmental Health Perspectives

Volym

116

Issue

6

Dokumenttyp

Artikel i tidskrift

Förlag

National Institute of Environmental Health Sciences

Ämne

  • Environmental Health and Occupational Health

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 1552-9924